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Measurements have been made of the specific heat at constant volume of solid 3He from 3 OK up 
to the melting point at a number. of different densities corresponding to pressures up to 2000 atm. 
The measurements have been extended through the melting region at constant volume up to 
29 OK in the fluid phase. For comparison similar measurements have been made on 4He at four 
different densities. 

By combining these data with the p-V- T data of Mills & Grilly (1955) and Grilly & Mills (1959), 
the complete thermodynamic properties of the solids have been derived in the relevant pressure 
and temperature range. The results can be understood semi-quantitatively in terms of the zero­
point energy of the solids and a quasi-harmonic model of the lattice vibrations. A brief discussion 
of the specific heat of the fluid phase is also given. 
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Simon (1934) first drew attention to the importance of zero-point energy in interpreting 
the properties of solid and liquid helium. If helium behaved classically, it would exist as 
a solid in equilibrium with its vapour at the lowest temperatures with a molar volume of 
about 10 em!! and a latent heat of sublimation of about 150 cal/mole; all this can be readily 
deduced from the properties of the gas phase at higher temperatures. In fact experiment 
shows that solid fHe is not in equilibrium with the vapour phase at any temperature and that 
at the lowest temperatures it exists in equilibrium with the liquid under a pressure of about 
25 atm. Its molar volume under these conditions is more than 20 em!! and its internal energy 

t Now at the Department of Physics, University of Alberta, Edmonton, Canada. 
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with respect to the gas phase (infinitely dispersed) is only 12 cal/mole. These differences 
between the actual behaviour and that of the classical model are due to zero-point energy. t 

A similar situation occurs in 3He although: since the atomic mass is smaller and the 
interatomic potential the same, the zero-point energy has an even greater influence here. 
In addition to the mass difference, the nucleus of3He has a spin value of t while that of4He 
has no spin. This has important consequences for the relative entropies of the liquid and 
solid phases of 3He at low temperatures and leads to a minimum in the melting curve of 
3He at about 0'3 OK. In this paper we are concerned with the solid phase region above 
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about 3 OK and at pressures less than about 2000 atm. In this region, it appears that th( 
nuclear spins are randomly oriented so that there is an additional entropy of R In 2 whid­
is absent in 4He (cf. the end of § 3·1 below). This spin difference is also associated with , 
difference in the statistics appropriate to the two isotopes and this shows up very remarkabl~ 

in the very different properties of the two liquid isotopes. (For a review of the properties 0 

solid and liquid 3He see, for example, Bernardes & Brewer 1962.) 
In both the solid isotopes of helium there exist at least three different structures, body 

centred cubic, hexagonal close-packed and face-centred cubic. The phase diagram for bot] 
solid isotopes is shown in figure 1. According to classical lattice theory, a solid compose, 
of atoms which have central, additive short-range forces should have a c1ose-packe 
structure. In helium where the condition of central, additive short-range forces betwee 
atoms should be realized, we might therefore expect to find either of the two close-packe 
structures: on the other hand, the existence of the b.c.c. structure is unexpected. A1mo~ 

certainly this is another illustration of the influence of zero-point energy. 
t For a review of work on solid 4He up to 1956 see, for example, Domb & Dugdale (1957). 



The experiments which we shall now describe were designed to measure the specific 
heat at constant volume of solid 3He at temperatures from about 3 OK up to the melting 
point at different densities corresponding to pressures up to 2000 atm. The melting region 
at constant volume was also investigated and measurements were made in the fluid region 
up to 29 OK. The general scope of the experiments was similar to that of the experiments by 
Dugdale & Simon (1953) on solid 4He. For comparison with these experiments and because 
the present apparatus is capable of higher accuracy than that of the earlier work, we have 
made some measurements on 4He. The apparatus and experimental results will now be 
described. 

2. EXPERIMENTAL 

2·1. The calorimeter 

The measurements were made with an adiabatic calorimeter of conventional design. 
Figure 2 gives a sketch of the calorimeter and the adiabatic shield. The calorimeter 
incorporates the high pressure cell A (which accommodates the helium sample), a gas 
thermometer bulb B, a vapour pressure chamber C, a heater D, and a thermometer E. 

E 

G 

:I 
FIGURE 2. Calorimeter assembly and adiabatic shield. 

The pressure cell was machined from a solid cylinder of drillrod steel of i in. outer 
diameter. A hole of i in. diameter was drilled to within t in. of one end. The opposite end 
was closed with a threaded plug which was put into place with hard solder. At each end 
a high pressure steel capillary of 1 mm outside diameter and 0·1 mm bore joined the cell. 
The capillaries widened at the end to about i- in. outside diameter and were threaded along 
this part. The capillaries were then threaded with hard solder into the cell. This technique 
gives a perfect seal which withstands high pressures. One of the capillaries leads to the filling 
line whereas the second capillary leads to a small Bourdon gauge. 

The gas thermometer bulb was made from copper of -fa in. wall thickness and had a 
volume of about 33 cm3• A split copper tube of l6 in. wall thickness extended from the 
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bottom of the gas thermometer bulb. The pressure cell was placed inside this tube with soft 
solder. Near the top rim of the gas thermometer bulb several cavities were provided for 
housing the heater and the thermometer. The gas thermometer bulb, and the receptacles 
for heater, thermometer, and pressure cell were machined from one piece. This ensured 
good thermal conduction throughout. The relative positions of heater, thermometer, and 
pressure cell were so chosen as to avoid any disturbance of the heater or thermometer when 
the pressure cell was subjected to pressure. 

The thermometer is described in § 2·2. The heater consisted of about 2000 n of manganin 
wire, wound on a small copper former which in turn was put with soft solder into one of the 
cavities. The lead wires for thermometer and heater were lacquered for a length of several 
centimetres to the calorimeter before leaving it. The lead wires were 36-gauge mang3:nin wire 
between calorimeter and the liquid helium stage of the cryostat. From there on 34-gauge 
copper wire was used. The lead wires were brought into thermal contact with the adiabatic 
shield for about 30 cm. One of the potential leads of the heater was connected at the 
calorimeter, the other at the adiabatic shield. . 

The vapour pressure chamber had a volume of about 3 cm3 and was placed on top of 
the gas thermometer bulb (figure 2). It is connected to two thin-wall cupro-nickel 
capillaries of 0'5 mm bore. Both capillaries as well as the high pressure capillaries leading 
to the pressure cell were wound into spirals 25 cm long before making thermal contact with 
the adiabatic shield. The gas thermometer bulb was connected to the outside through a thin 
wall cupro-nickel capillary of 0'3 mm bore; this capillary was brought out through the 
bottom of the adiabatic shield and the cryostat in order to keep the low temperature part 
of it as short as possible. 

The cryostat contained a stage for liquid hydrogen and a stage for liquid helium. The 
high-pressure capillaries were thermally anchored for about 50 cm to the liquid helium 
stage. Under the pressures employed in this investigation the high pressure capillaries were 
therefore blocked by a plug of solid helium. This made it possible to measure the specific 
heat at virtually constant volume. The adiabatic shield had a heater of about 1000 n at F 
(figure 2). A differential thermocouple G (silver, 0'37 at. % gold/gold, 2'1 at. % cobalt) indi­
cated the temperature difference between shield and calorimeter. The temperature of the 
shield was controlled semi-automatically so that the drift of the calorimeter was zero. The 
calorimeter was cooled to 20 OK by means of exchange gas. The exchange gas was then 
pumped off and further cooling was achieved by passing cold helium gas through the 
vapour pressure chamber. The lowest temperatures were obtained by liquefying some 
helium (4He) in the vapour pressure chamber and then pumping it off. Measurements were 
started after a vacuum better than 5 x lO-6 mmHg was established in the vacuum line 
connected to the vapour pressure chamber for about 10 min. 

The heat capacity measurements were made in the usual way. Heating intervals varied 
from about 0'06 deg near 3 OK to 0'6 deg near 30 OK. Measurements below about 3 OK were 
not feasible because the control of the shield temperature became increasingly difficult 
owing to the reduced sensitivity of the differential thermocouple. 
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, 2·2. Temperature scale 
The thermometer was a lOn, 1 W, Allen-Bradley carbon resistor; its plastic cover was 

ground off and the resistor then placed inside its cavity with varnish. It was calibrated 
against the vapour pressures of helium (4He) and hydrogen (of known ortho-para composi­
tion) close to their normal boiling points. For interpolation the two-constant formula 

(Clement 1955) was used, (10 R)* f. = a+blogR, (1) 
c 

where R is the resistance and the constants a and b are determined from the calibration 
. points. Temperatures as determined from equation (1) are for clarity designated by 7;. 
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FIGURE 3. Corrections applied to the carbon thermometer temperature Tc to 
convert it to the absolute temperature T. 

This calibration was performed each time after the thermometer had been allowed to 
warm up to room temperature ,and a slight change of the constants a and b was observed 
after e~ch warm-up. 

It is known that interpolation with equation (1) leads to serious deviations from true 
temperature, especially above 20 oK. A complete calibration of the thermometer against 
the helium gas thermometer was therefore obtained. The technique employed was as 
described by Franck & Martin (1961). Temperatures as obtained from the gas thermo­
meter readings are designated T and are believed to be accurate to within ± 5 mdeg. The 
results of two calibrations are given in figure 3 as T -7; plotted against T. 

From previous experience with thermometers of the Allen-Bradley type it was known 
that the effect of successive warm-ups on the deviation curve T - 7; is almost negligible 

:"'~' -;" 
. ~ i 



> LI ~~=-~-~--~=: :! ::::~::::::~::::::~~::::::::::~~::::~-:::::=-~~~~~::~~ 

6 J. S. DUGDALE AND J. P. FRANCK 

although the const~nts a and b may change. The correction T - ~ for all heat capacity 
measurements was therefore taken from the smoothed curve in figure 3. The temperatures 
T obtained in this way are estimated to be accurate to within ± 5 mdeg. 

2· 3. Gas handling and operation 

A general scheme of the gas handling system is given in figure 4. Different methods were 
used for handling the two isotopes, because the rare isotope, 3He, had to be recovered 
completely and was supplied at about atmospheric pressure. 

~-___ ~F 
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H 

FIGURE 4. Schematic diagram of the gas handling assembly. 

"He was taken from a cylinder of commercial helium, purity 99·995 % with the remainder 
mainly N2 and CO2, It was passed at cylinder pressure (ca. 150 atm) through a silica-gel 
trap and a charcoal trap at liquid nitrogen temperature and then fed into the high pressure 
Toepler pump A. Valve I was then closed and the gas pressurized by means of the hydraulic 
pump B. The gas was fed into the calorimeter through the capillaries C and D of 0·1 mm 
bore with valves 2 and 3 open. The capillary C passed through liquid nitrogen for about 
50 cm. The calorimeter was cooled to 20 OK with valve 3 closed. At 20 OK additional 
helium was fed into the calorimeter to roughly the required density. The liquid helium 
stage of the cryostat was then cooled to 4 OK and the calorimeter cooled to below the 
freezing point with valves 2 and 3 open. No particular care was taken to freeze the sample 
slowly. Valve 3 was then closed and the measurements started. Valve 3 is a miniaturized 
high-pressure valve, and care had been taken to avoid dead space. Its dead space on the 
calorimeter side, when closed, is about 0·0018 ems. Pressure transmission to the calori­
meter during the filling operation could be easily monitored on the Bourdon gauge F. This ' 
gauge was made from copper-beryllium tubing of 0'4 mm bore and had a volume of 
0'058 cm3• Observation of this gauge showed too that the high pressure capillaries D and E 
stayed blocked while working in the melting and the fluid range. 

3He was supplied through the Monsanto Company and the supplied analysis shows no 
detectable "He impurity. The gas was pressurized to about 1'5 atm in the low pressure 
Toepler pump G and condensed under this pressure at about 1'5 OK in the pressure 



vessel H. Before entering H the gas passed through the cold trap I at 4 oK. After most of 
the gas was transferred into H, valve 4 was closed and the gas allowed to warm up and enter 
the high pressure Toepler pump. From this stage on the procedure was the same as with 
4He. Before filling with the gas the calorimeter and high pressure Toepler pump had to be 
evacuated. In the case of 4He the system was pumped for 3 days and then flushed several 
times at pressures up to 2000 atm with clean 4He. In the case of SHe this method could not 
be followed. The system was therefore first thoroughly flushed with hydrogen in order to 
avoid contamination with 4He and then pumped for 11 days. From tests with 4He and 
a helium leak detector, this time was known to be sufficient to empty the system adequately. 

2-4.. Determination of molar volume and mass of sample 
The molar volume of the helium samples was not determined directly but inferred from 

the melting data of Mills & Grilly (1955), and Grilly & Mills (1959). As the samples were 
held at constant yolume melting took place over a finite temperature interval. The tem­
perature at the beginning of the melting range, Tm, was obtained by taking heating curves. 
A well pronounced kink in the curve of temperature against time was observed which 
allowed Tm to be estimated to within 0·002 degK_ From this temperature the pressure at 
the beginning of melting, Pm' and the molar volume V could be calculated using the data 
of Mills & Grilly. 

For the measurements on 4He the mass of the sample was obtained in the following way. 
After completion of the heat capacity measurements the high-pressure Toepler pump was 
disconnected at valve 3 (figure 4) and the low-pressure Toepler pump connected to this 
valve. The gas filling the calorimeter and the dead space up to valve 3 was then transferred 
quantitatively by means of the Toepler pump to a stack of calibrated volumes K. The 
volumes K (roughly 0-6, 1-2 and 2-41.) had been calibrated by weighing with water. They 
were immersed in a water bath whose temperature could be determined to about 0'01 degK. 
The pressure in K was read on the constant volume manometer L to better than 0'1 mm 
using a cathetometer. The mass of helium gas was determined from the p-V- T data given 
by Keesom (1942) after due corrections for dead space had been applied. The dead space 
consists of the two high-pressure capillaries D and E (0'016cmS), the Bourdon gauge F 
(0-058cm3), and the calorimeter side of the closed valve 3 (0·0018cm3). The whole dead 
space correction is approximately 2· 3 % and is estimated to be known to better than 15 %. 
The accuracy of the mass determination is estimated at 0'5%. 

From the mass determination and the molar volume V, the volume v of the high-pressure 
cell could be calculated. The results for v (about 1·46 cm3) obtained in this way showed 
a slightly increasing cell volume with increasing pressure which agreed with the elastic data 
for drill 'rod steel. The average deviation of v found in the four 4He experiments from a 
straight line is 0-2 %. 

In the case of 3He it was not thought feasible to transfer the cell content after each 
measurement to the calibrated volumes. The mass of the samples was instead calculated 
from the molar volume V, obtained as described above, and the cell volume v, obtained 
from the measurements on 4He as described. 
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FIGURE 5. The specific heat at constant volume of solid and fluid 4He at various volumes. 
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3. EXPERIMENTAL RESULTS 
I' 

3'1. Specific heat' of solid helium 

The specific' heat of solid 4He was measured at four different molar volumes, and of solid 
3He at ten different molar volumes. The results are shown in figures 5 and 6. Debye tem­
peratures OD were calculated from the experimental points and are shown in figures 7 and 8. 
Included in figure 7 are earlier measurements by Keesom & Keesom (1936). 

40 
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FIGURE 7. The Debye temperature of solid 4He as a function of temperature at 
different molar volumes. 

The heat capacity of the helium samples contributed from 30 to 40 % of the total measured 
heat capacity near the melting point. This ratio became progressively worse with falling 
temperature and varied from 5 to 25 % at 3 OK. The accuracy is therefore greatly reduced 
below about 5 OK, especially for samples of low molar volume. Because of this we feel that 
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the apparent decrease of ()D at the low temperature end of the measurements is probably 
due to experimental error. Above 5 oK we have about 1 % scatter in Cv' An error of about 
O' 5 % has to be assigned to the determination of the sample mass. We therefore estimate 
the error in Cv above 5 oK at about 1· 5 %. 

In tabulating the results we have proceeded as follows. Smoothed lines were drawn 
through the plot of De bye temperatures ()D against T and extrapolated from about 5 to 0 oK 
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FIGURE 8. The Debye temperature of solid sHe as a function of temperature at 
different molal" volumes. 

along the dashed lines. This extrapolation is at present very tentative and is discussed more 
fully in §4·1 together with the recent measurements ofHeltemes & Swenson (1961, 1962). 
Values of the specific heat Cv were calculated from the smoothed () D plot above 3 OK at 
rounded values of temperature and are given in tables 1 and 2. It can be seen in figures 7 
and 8 that close to the melting point the Debye temperatures tend to be low for some runs. 
This was attributed to pre-melting phenomena and depends probably on the method of 
freezing the sample. We have therefore extrapolated the 0D plot smoothly towards the 



temperature of onset of melting. The corresponding values of Cv obtained in this way are 
tabulated for the actual molar volumes investigated in tables 1 and 2. 

The earlier measurements of Dugdale & Simon (1953) agree with the present results to 
within 2% of Cv near the melting line. With falling temperatures Dugdale & Simon's 
results become progressively larger than the present ones and at 5 oK the discrepancy in Cv 

is about 15 %. Their measurements did not show the marked rise in OD with falling tem­
perature observed here; this rise is, however, in agreement with the results of Keesom & 
Keesom (1936) at higher molar volumes. 

TABLE 1. THERMODYNAMIC FUNCTIONS FOR SOLID 4He AT ROUNDED VALUES 

OF TEMPERATURE 

V = 16·25 14·55 12·22 11·77 
T A 

I , 
(OK) C. U-Uo S C. U-Uo S C. U-Uo S C. U-Uo S 

3 0·128 0·0914 0·040 0·0506 0·0363 0·0160 0·0136 0·0099 0·0044 0·0106 0·0077 0·0034 
4 0·333 0·310 0·102 0·132 0·123 0·0404 0·0348 0·0328 0'OlO8 0·0265 0·0254 0·0084 
5 0·697 0'811 0·212 0·279 0·322 0·0842 0·0742 0·0855 0·0224 0-0559 0-0652 0-0172 
6 0·507 0·708 0·154 0·138 0·189 0·0412 0·105 0·144 0·0313 
7 0·816 1·36 0·254 0·232 0·372 0·0692 0-177 0·282 0·0525 
8 0·358 0·665 0-108 0·275 0-506 0·0823 
9 0·515 1-10 0·159 0-399 0-840 0·122 

10 0-700 1·70 0·223 0-549 1·31 0-171 
11 0-907 2·50 0·299 0·721 1·95 0-231 
12 1-13 3·52 0·387 0·909 2·76 0-302 
13 1·37 4·77 0·487 HI 3'77 0-383 
14 1·61 6·26 0·597 1-32 4·98 0-472 
15 1·53 6·40 0-571 
16 1-75 8·04 0-676 

Units: V (ems/mole); C. (eal mole-1 deg- 1); U - Uo (eal/mole); S (cal mole-1 deg- 1). 

Heltemes & Swenson (1961, 1962) have made measurements on solid 3He and 4He over 
a range of densities similar to those studied by us but at temperatures between 0'3 and 
about 1'5 oK. Their results will be discussed more fully in § 4,1 below. At this point it is 
sufficient to note that they found no evidence of any specific heat anomaly which could be 
attributed to the nuclear spins in 3He. If the nuclear spins were interacting appreciably 
one would expect to see an anomaly in the specific heat corresponding to the decrease in 
entropy from R In 2 towards zero as the temperature falls. At the high temperature side of 
such an anomaly the specific heat from this source would be expected to vary as I/T2. 
Since no such term was detected we shall assume that in solid 3He the spins contribute their 
maximum entropy (R In 2) at all the temperatures and densities which concern us here. 

3·2. The melting range 

Melting of the helium samples took place over a finite temperature interval since the 
volume was kept constant. Within the melting range the measured apparent specific heat 
depends on the specific heat of the solid and of the fluid, and on the latent heat of melting. 
The thermal relaxation time is much longer in this range than either in the solid or in the 
fluid range and it increases considerably towards the high temperature end of the melting 
range. This is probably due to the fact that the large latent heat of melting has to be trans­
ferred through the poorly conducting liquid. Equilibrium times of up to 20 min were 
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TABLE 2. THERMODYNAMIC FUNCTIONS FOR SOLID 3He AT ROUNDED VALUES OF TEMPERATURE 

V = 17·02 16·87 16·71 15·72 
--.J. A A 

U-UO S C. U-UO S C. U-UO S C. U-UO S C. 
15 0·0746 0-0328 0-0962 0·0679 0·0298 0·0905 0·0647 0-0285 0·0537 0·0384 0·0169 0·0369 
II 0·269 0·0843 0·260 0·236 0·0770 0·240 0·221 0·0724 0-142 0·131 0·0429 0·0966 

0·526 0·591 0·154 0·307 0·347 0·0906 0-208 
0·571 0·777 0·168 0·386 

0·636 

14·16 14·11 13·56 13·33 
-.A A , 
U-Uo S C. U-Uo S Cv U-Uo S C. U-Uo S C. ' V 

237 0·0171 0·0076 0·0226 0·0163 0·0072 0-0172 0-0125 0-0055 0-0149 0-0108 0-0048 0-0100 
608 0-0571 0·0188 0-0588 0-0548 0-0180 0-0437 0-0414 0-0137 0-0381 0-0359 0-01l8 0-0250 
31 0-150 0-0392 0·128 0·145 0-0379 0-0937 0-108 0-0282 0·0822 0-0938 0-0246 0-0527 
:47 0·335 0-0726 0-242 0·327 0-0707 0-176 0-240 0-0521 0-156 0-210 0-0456 0-0988 
f14 0-661 0-123 0'402 0·645 0-1l9 0-298 0-474 0·0879 0-262 0·416 0·0771 0·168 
133 1-18 0·192 0-611 1-15 0-186 0-460 0-849 0-138 0-405 0'747 0·121 0-262 
~97 1-94 0·281 0-866 1-88 0-272 0·657 1-40 0·203 0-584 1-24 0·179 0-384 

0-888 2·17 0·284 0·798 1-93 0·251 0-533 
1-04 2-84 0-338 0-697 

0-902 
1·11 
1·33 

Units: V (ems/mole); C. (cal mole-1 deg-1); U- Uo (cal/mole); S (cal mole-1 deg-1)_ 

14·98 

U-UO 

0·0265 
0·0896 
0·216 
0·528 
1-03 

12·57 
A 

U-Uo 
0-0072 
0-0239 
0-0615 
0-136 
0-267 
0-480 
0-807 
1·26 
1·88 
2-68 
3·68 
4-91 

S 
0'01l7 
0·0294 
0·0619 
0'1l5 
0·192 

S 
0-0032 
0-0079 
0-0162 
0-0296 
0-0497 
0·0779 
0·116 
0·164 
0-222 
0-292 
0-372 
0-462 

l­
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observed. Because of this effect the accuracy in this range is reduced and is not better than 
a few parts per cent. 

As already described in § 2'4, the starting temperature of the melting range could be 
obtained by taking heating curves. Because of the extremely large thermal relaxation time 
near the end of the melting range this method was not feasible to determine the temperature 
of the end of the melting range. This temperature, however, could be calculated in an 
obvious way from an apparent specific heat measured over a heating interval that included 
the end of the melting range and part of the fluid range. This method when used for the 
determination of the temperature of the start of the melting interval gave agreement with 
the more direct observation from heating curves to within 0·002 degK on the average. 
. The experimental results of the apparent specific heat in the melting range were used to 
calculat{! the change in internal energy and in entropy over the melting range and are 
dealt with in § 3'5. 

3·3. The high-temperature phase transformation in solid 4He and 3He 

Both helium isotopes exhibit at high pressures a phase transition from a hexagonal 
close-packed to a face-centred cubic structure (Dugdale & Simon 1953; Mills & Schuch 
1961; Schuch & Mills 1961). In the course of the present investigation this transition was 
observed at one molar volume in 4He and at two molar volumes in 3He. A preliminary 
account of the results on 3He has been already given elsewhere (Franck 1961). For each 
sample investigated the transition temperature and the latent heat of transition were 
determined in the way described below. The results are given in table 3. The numerical 
data differ slightly from the ones given by Franck (1961) because of the corrections made to 
the temperature scale as described in § 2·2 and because of an error regarding the pressure 
unit in tha~ paper. ' 

TABLE 3. PROPERTIES OF THE h.c. p.-f.c.c. TRANSITION IN 3He AND 4He 

T.r. L P... M AV 
sample (OK) (eal/mole) (Kg/em2) (cal mole-1 deg- 1) (em3/mole) 

no. 1, SHe 17·818 0·068 1629·1 0·0038 1·4x 1O~ 
T,. = 17·964 OK 
Pm = 1631·5 Kg/em2 

V = 11·70 emS/mole 
no. 2, 'He 17 ·896 0·067 1717·5 0·0037 1·4x 10- 4 

T m = 18·688 OK 
Pm = 1730·7 Kg/em2 

V = 11·56 em3/mole 
no. 3, 4He 15·010 

T m = 16·419 OK 
Pm = 1327·4 Kgjem2 

V .= 11·77 emS/mole 

• AE. 

0·060· 1305·7 0·005t 4 x 10- 4t 

t Data from Dugdale & Simon (I953). 

The transition temperature was obtained from heating curves at constant energy input 
which showed a pronounced kink. The transition temperature was taken at the point where 
the heating curve first deviates from a straight line. Because of thermal and instrumental 
relaxation it was not possible to observe the natural width of the transition. The latent 
heat was obtained by making measurements of the apparent specific heat C:, for a tem­
perature interval that included the complete transition. As it was observed that the specific 
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14 J. S. DUGDALE AND J. P. FRANCK . 
heat, Cv' below and above the transition forms a continuous curve within the experimental 
scatter of about 1 % the excess energy consumption of the transition could be calculated 
from 

where !:l.T is the temperature interval for which C: had been measured and Cv is the inter­
polated specific heat at the centre of the heating interval. Within the experimental accuracy 
different heating intervals led to the same values of !:l.E. This proves that the observed 
C: data correspond to a real transition. The latent heat, L, of a transition is defined 
as the enthalpy change for the transition at constant pressure. As !:l..E has been observed 
at constant volume a correction has to be applied to obtain L. This correction to 
!:l.E turns out to be small for both 3He and 4He so that !:l.E can be taken as virtually L. In 
table 3 we include values of the transition entropy!:l.S = L/ T and of the volume change!:l.V 
calculated from the Clausius-Clapeyron equation. . 

The pressure at the transition temperature could be obtained from the pressure at the 
beginning of melting (as calculated from the data of Mills & Grilly) by the relation 

Ptr.-Pm = JTU. (8p/8T)v dT = JTU. (8S/8VhdT. 
Tm Tm 

(3) 

For 3He we obtain the phase separation line as 

Ptr. = 1609+1133(T-17'80) Kg/cm2, (4) 

where the triple point is at T = 17·80 OK. It has been assumed here that the phase line is 
linear. 

3'4. The fluid range 

Measurements in the fluid range were extended up to 29 OK. The results for some selected 
molar volumes are included in figures 5 and 6. Smooth curves have been drawn through 
the experimental points and values of Cv read from these curves are given at rounded 
temperatures in tables 4 and 5. The scatter in the fluid range is much more pronounced 

TABLE 4. SPECIFIC HEAT OF FLUID 4He AT ROUNDED VALUES OF TEMPERATURE 
V = 16·25 14·55 12·22 11·77 

T (OK) C. C. C. C. 
7 1·84 
8 1·99 
9 2·13 

10 2·25 2·12 
11 2·36 2·22 
12 2·47 2·32 
13 2·56 2-42 
14 2·65 2·51 
15 2·72 2·59 
16 2·79 2·67 
17 2·85 2·75 
18 2·90 2·81 2·64 
19 2·93 2·87 2·72 
21 2·99 2·98 2·85 2·79 
23 3·02 3·05 2·95 2·90 
25 3·04 3·10 3·04 3·00 
27 3·04 3·12 3'11 3·09 
29 3·04 3·13 3·16 3·16 

UnitB: V (ems/mole); C. (cal mole-1 deg-1). 



than in the solid range. This is probably due to the fact that in the liquid range the high­
pressure capillaries connected to the calorimeter are filled with fluid up to a certain point 
beyond the adiabatic shield and this point will be temperature-dependent. It is therefore 
possible that a heat and mass transport through convection currents within the capillaries 
takes place. The volume of the capillaries up to the point where they are-thermally anchored 
to the liquid helium can is about 0'005 cm3 as compared to 1'46 cm3 of the high pressure 
cell. It appears therefore that a mass transport alone would not seriously distort the results. 
The accompanying heat transport, however, could have such an effect. The accuracy can 
probably be estimated from the experimental scatter which is about 4 %. 

TABLE 5. SPECIFIC HEAT OF FLUID 3He AT ROUNDED VALUES OF TEMPERATURE 

v = 17·02 16·87 15·72_ 14·98 ·14·16 14·11 13·56 13·33 12·57 
T(OK) C. C. C. C. C. C. C. C. C. 

6 1·38 1·40 
~, ; 7 1·56 1·55 

8 1·72 1·70 1·62 
9 1·86 1·84 1·75 

10 1·99 1·97 1·88 1·83 
11 2·11 2·09 2·00 1·94 1·90 1·90 

• 12 2·22 2·20 2·11 2·04 1·99 1·99 
13 2·31 2·30 2·21 2·14 2·08 2·07 2·04 
14 2·40 2·38 2·30 2·23 2·16 2·16 2·12 2·09 
15 2·48 2·46 2·38 2·32 2·24 2·24 2·19 2·17 
16 2·55 2·54 2·45 2·40 2·32 2·32 2·27 2·26 
17 2·61 2·61 2·53 2·47 2·40 2·40 2·34 2·34 2·28 
18 2·66 2·67 2·60 2·54 2·46 2·47 2·41 2·41 2·34 
19 2·72 2·72 2·66 2·61 2·53 2·54 2·48 2·48 2·40 
21 2·82 2·81 2·77 2·72 2·65 2·66 2·61 2·61 2·51 
23 2·90 2·89 2·86 2·81 2·76 2·76 2·72 2·72 2·62 
25 2·98 2·94 2·92 2·88 2·85 2·84 2·81 2·80 2·73 
27 2·99 2·98 2·93 2·92 2·90 2·89 2·87 2·82 
29 3·03 3·03 2·97 2·97 2·97 2·95 2·93 2·90 

Units: V (cm3/mole); C. (cal mole-1 deg-1). 

3'5. The thermal energy and entropy 

The thermal internal energy, U - Uo, and the lattice entropy, S, were calculated from the 
smoothed experimental data by means of the relation 

. 

U-Uo = f~ CvdT 

S= f~?dT. 
Here Uo is the internal energy of the solid at 0 OK at the specified volume. 

(5) 

(6)t 

Values of U - Uo and S for the solid at rounded values of temperatures are included in 
tables 1 and 2. Diagrams of the entropy over the whole temperature range investigated are 
given in figures 9 and 10. The melting entropy (at constant temperature), Sm' can be 
obtained from these figures and is plotted separately in fl.gures 11 and 12. A comparison is 
made with the data of the melting entropy given by Grilly & Mills (1959) (obtained from 

t In 3He we are assuming that the nuclear spins are completely random in orientation so that for all 
the temperatures and densities considered here there is an additional constant term in the entropy of 3He of 
magnitude R In 2 (cf. discussion on p. 11). 



16 ]. S. DUGDALE AND J. P. FRANCK 

melting curve data by means of the Clausius-Clapeyron equation) and by Keesom & 
Keesom (193 6) and Dugdale & Simon (1953) (from calorimetric data). It appears that the 
present data are from 1 to 2% lower than Grilly & Mills's data, but show the same 
temperature-dependence. This deviation is probably within the combined limit of error. 
The agreement with the earlier data of Keesom & Keesom, and of Dugdale & Simon-is 
not so close. 
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temperature (OK) 

FIGURE 9. The entropy of 4He. The numbered lines are lines of constant volume. 

3'6. Calculation of related thermodynamic properties 

The results given in the previous sections were derived by using the present experimental 
information only. A complete thermodynamic description, however, cannot be obtained 
from specific heat data alone. In addition to this one p-V- T relation over the experimental -
range covered has to be known. For this relation we took the melting curve, p against T 
and V against T as given by Mills & Grilly (1955), and Grilly & Mills (1959). 

a·6·1. Isochores and isotherms of solid 4He and 3He 
According to one of the Maxwell thermodynamic relations 

(iJS/iJV)T = (iJp/iJT)v. , . (7) 



(aSjaV)r can be obtained from the experimental results by numerical differentiation. By 
using Mills & Grilly's p-V- T data and equation (7) we can then 'obtain the pressure at 
constant molar volume as a function of temperature, i.e. the isoch.ores 

p(T) = PI1l- f:m 

(aSjaVhdT, (8) 

Pm = p(Tm), V = const. 
The isochores are given in tables 6 and 7 for rounded values of the molar volume. The 
columns of these tables give immediately the isotherms, i.e. p = p( V) at const~nt temperature. 

4 ~ • 

o 16 
temperature (OK) 

FIGURE 10. The lattice entropy of 3He. The numbered lines are lines of constant volume. 

3'6'2. Compressibility 
We have calculated the compressibility of solid 4He and 3He at 0 oK from the 0 oK 

isotherm 
, fl _ _ ~(aV) 

- V ap T=O' 
(9) 

fl is given at rounded values of molar volume in table 8. 

3'6'3. Thermal expansion coeJficient 
The volume thermal expansion coefficient, IX, can be obtained from the thermodynamical 

relation IX = fl(apjaT)v' (10) 
IX for solid 4He and 3He is given as a function oftemperature and molar volume in table 9. 

3 
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FIGURE 11. The melting entropy of4He as a function of temperature. --, This work; -...... , Grilly 
& Mills (1959); x, Dugdale & Simon (1953); 0, Keesom & Keesom (1936). 
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FIGURE 12. The melting entropy of 'He as a function of temperature. 
--, This work; -...... , Grilly & Mills (1959)· 
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TABLE 6. ISOCHORES FOR SOLID 4He 

T .... O 2 4 6 8 10 12 14 15 

V P P P P P P P P P 
12·0 1134·6 1134·6 1134·8 1135·9 1139·1 1146·2 1158·4 1178·2 1191·9 

12·5 904·7 904·7 905·0 906·4 910·5 919·2 934·3 
13·0 732·5 732·5 732·9 734·7 740·0 751·4 
13·5 596·6 596·6 597·1 599·4 606·2 622·1 
14·0 487·1 487·1 487·8 490·8 499·7 
14·5 395·9 396·0 396·8 400·8 , '--

15·0 323·8 323·9 324·9 330·0 
15'0 266·0 266·1 267-4 274·0 -
16·0 215·7 215·8 217·7 
16·5 175·6 175·8 178·2 

Units: T (OK); V (emS/mole); p (Kg/em2). 
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V 

12·5 
13·0 
13·5 
14·0 
14·5 
15·0 
15·5 
16·0 
16·5 
17·0 

TABLE 7. ISOCHORES FOR SOLID SHe 
T=O 2 4 6 8 10 12 

P P P P P P P 
1128·8 1128·8 1129·0 1129·7 1132·4 1138·7 1150·2 
931·7 931·7 931·9 932·9 936·1 943·4 956·5 
772·9 773·0 773·3 774·6 778·8 787·8 
644·1 644·2 644·6 646·3 651·7 
538·9 539·0 539·4 541·8 548·7 
453·7 · 453·8 454·4 457·4 
383,7 383·8 384·6 388·5 
326·4 326·5 327·4 
278·3 278·4 279·7 
238·0 238·1 239·7 

Units: T (OK); V (ems/mole); p (Kg/em2). 

TABLE 8. COMPRESSllULITY OF SOLID 4He and SHe AT 0 OK 
105p (em2/Kg) 

A 

V (ems/mole) 4He 3He 
f 12·0 15·9 

12·5 20·0 18·3 
13·0 24·8 21·8 
13·5 30·0 26·0 
14·0 36·0 30·8 
14·5 43·1 36·4 
15·0 51·2 43·0 
15·5 59·9 51 ·0 
16·0 70·1 60·0 
16·5 69·4 
17·0 79·6 

TABLE 9. VOLUMETRIC THERMAL EXPANSION COEFFICIENT OF 
SOLID 4He AND 3He 

V 

12 
13 
14 
15 
16 

13 
14 
15 
16 
17 

0·004 
0·009 
0·030 
0·070 
0·156 

0·009 
0·018 
0·037 
0·082 
0·149 

4 

0·037 
0·101 
0·260 
0·60 
1·38 

0·049 
0·127 
0·285 
.0·63 
1'56 

103 a (deg-') 

6 8 
4He 

0·151 
0·40 
0·94 
2·32 

SHe 
0·198 
0·49 
H7 
2·67 

0·39 
0·98 
2·54 

0·54 
1·27 

10 

0·78 
2·02 

HO 

12 14 

1·35 2·20 

1·94 

Units: T (OK); V (emS/mole). 

3'6,4. The internal energy at 0 OK 

14 
P 

1167·6 

In all subsequent discussion, the zero of energy will be taken as that of the infinitely 
separated atoms with zero kinetic energy (i.e. at 0 OK). With this zero of energy the experi­
mental value of the internal energy at 0 OK and volume V can be obtained from the relation 

(ll) 

3-2 
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Lo is the latent heat of vaporization at 0 oK, Pm!1Vm is the work done in solidifying ~e liquid 
at 0 oK, and the two integrals give the work of compression in the liquid and the solid range, 
respectively. (Ii; is the volume of the liquid in equilibrium with its vapour, Vz in equilibrium 
with the solid, and V; that of the solid in equilibrium with the liquid.) 

200 

100 

--~ 

liquid 0 OK 
liquid 0 OK 
b.c.c. solid 0 OK 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

TABLE 10 

\ 
\ , 

P V 
(Kg/cm2) (cms/mole) 

, , 
... ... 

o 36·63 
29 26·0 
29 24·2 

... 
"- ... 

"­
.................. 

"-~He 

'He 

Uo 
(cal/mole) 

-5·04 
-2·6 
-1·8 

~ 1 ___ -+ ____ ~----~--_4--~_h==--+_--~~--_+--~ 
U Or- ~He 

-100 

FIGURE 13. Energy relations at 0 oK for solid 4He and sHe. Uz is the zero-point energy; Uo is the 
internal energy at absolute zero; and Cl> is the classical static lattice energy calculated from the 
de Boer-Michels potential. --. , Experimental; ------, London (1954)· 

For 4He we have taken Swenson's (1950) estimate for one value of Uo• According to this, 
Uo for the solid at the melting pressure is -11·9 cal/mole. In order to obtain Uo for smaller 
molar volumes we have to calculate the work of compression according to equation (11). 
This information is known from the present experiments between 17'0 and 11'5 ems/mole. 
Up to V == 17 cm3/mole we have used an extrapolation of the isotherm at 0 OK. This 
extrapolation gives Uo = - 5·07 cal/mole for V = 17 ~O ems/mole. 
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The calculation of Uo in the case of 3He is complicated by the fact that ordering of the 
nuclear spins starts in the liquid phase below roughly 1 0 K. We have tried . to eliminate this 
effect by extr~polating the various quantities from above 1 oK towards 0 oK. The thermal 
energy associated with complete spin ordering is, however, certainly less than 1 cal/mole 
and is therefore not important for the present purpose. 

From thevapourpressuredataofSydoriak & Roberts (1957) we find Lo = -5·04cal/mole 
for liquid SHe at zero pressure. The work of compression of the liquid up to the melting 
pressure was estimated from the data of Sherman & Edeskuty (1960); this gives 2·5 cal/mole. 
The change in Uo upon solidification was estimated as 0·8 cal/mole from the results of Mills, 

. Grilly & Sydoriak (1961), and of Grilly & Mills (1959). The melting pressure at OOK was 
taken as 29 Kg/cm2• Table 10 gives the different steps of the calculation. The work ofcom­
pression up to V = 16·5 cms/mole, the lowest part of the OOK isotherm known experi­
mentally was estimated at 20·5 cal/mole. For this we used, as in the case of4He, an extra­
polation of the 0 OK isotherm taking the melting line of Grilly & Mills (1959) as a guide. 
This procedure is reliable to probably better than 1 cal/mole because the 0 OK isotherm is 
quite close to the melting line in this density range. The transition, from b.c.c. 3He to 
h.c.p SHe, which was estimated by Mills & Grilly (1959) to have zero volume change at 
o OK, has been neglected. 

Values of f!o for both isotopes are shown as a function of volume in figure 13. 

4. DISCUSSION 

4·1. The specific heat of solid helium 

At temperatures sufficiently low that the wavelengths of the excited lattice vibrations are 
long compared to the interatomic distance, the continuum model should describe the 
behaviour of the actual solid very accurately and Cv should be given by the well-known 
relation 

_ 12114 (T)3 
Cv - 5 R 8 . 

o 
(ll) 

Here R is the gas constant and 80 the limiting low-temperature value of the Debye tempera­
ture which can also be calculated from the low-temperature elastic constants of the solid 
(cf. Barron & Klein 1962). This T3 behaviour is to be expected only at temperatures below 
about 8/50. Above this 8D will in general be temperature dependent; figure 14 illustrates 
the kind of temperature dependence to be expected of8D for a harmonic solid with short­
range forces and a close-packed structure. At high temperatures 8D would, in this model, 
again become constant at a vah.ie usually referred to as 800 • 

For solid 3He and 4He we see (from figures 7 and 8) the fall in 8D with increasing tempera­
ture but no minimum in the curve. This may be because melting and' pre-melting' (perhaps 
the onset of vacancy formation) prevent us from seeing this part of the curve at these 
densities. The magnitude of the change in 8D with temperature is, however, not very different 
from that found in other inert gas solids such as argon and krypton over the corresponding 
range of temperatures (cf. Beaumont,Chihara & Morrison 1961 ). 

If at these densities solid helium approximated to a harmonic solid, the values of 8D at 
lower temperatures would be similar to those indicated by the dashed lines in figures 7 and 8 . 

•• 

, ! 
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The experimental data from O' 3 to 1· 5 oK due to Heltemes & Swenson (1962) do not, how­
ever, confirm these expectations. According to their measurements, the specific heats of 
both isotopes tend to be higher than those corresponding to the dashed lines in figures 7 
and 8; in fact Heltemes & Swenson conclude that there is, in addition to the term in (TI0)S, 
an additional contribution to the specific heat approximately proportional to T. This 
contribution does not change much with volume and is of similar magnitude in both 3He 
and 4He. On the plot of OD against T this would show as a maximum in the curve for a 
particular density followed by a rather rapid fall in 0D at the lowest temperatures. In the 
preliminary account of their experiments, Heltemes & Swenson (1961) assumed that this 
linear term was spurious and due to some unexplained peculiarity of the apparatus. Since, 
however, they were subsequently unable to find anything wrong with the apparatus, it is not 

0.80~----'------f-=-----L---~~-----"----:!"-,, 
0·2 0'4 V'V 

T/Oo 
FIGURE 14. The dependence of On on temperature,as calculated for an f.c.c. lattice (after Leighton 

1948). The precise form of the curve depends on the force constants chosen. 

at present clear whether this contribution to the specific heat is a genuine effect or not. The 
situation clearly calls for better data, especially in the range I to 4 OK, to obtain more 
reliable information on the temperature variation of ODin this range. This uncertainty means 
that we cannot convincingly extrapolate the 0D curves to 0 OK. Although this is unfortunate 
in that we cannot then evaluate 00' it does not appreciably affect the calculations of the 
entropy and internal energy of the solid already described, since the contribution to these 
quantities from this small term in the specific heat is negligible. t 

Since reliable values of the Debye temperature at 0 OK cannot be obtained at present, we 
base the following discussion of the volume dependence of 0 D on a comparison at constant 
reduced temperature (i.e. at constant TIOD)' The lowest reduced temperature for which 
experimental values of 0D were obtained is TIOD = n. In figure 15 we have plotted 0D as 
function of molar volume for TIOD = is. From these curves we can derive a value for the 
Gruneisen constant y y = -iJ In0liJ In V. (12) 

We find for both isotopes almost independent of molar volume y = 2-4. 

t [Note added in proof, 10 June 1964.] Recent measurements (Franck, to be published) from 1·3 to 4 OK on 
solid 'He for molar volumes between 10·85 and 16·30 cm3/mole have shown an anomalous linear term in 
the specific heat similar to that found by Heltemes & Swenson. The extrapolated Debye temperature at 
o OK agrees with the data reported by Heltemes & Swenson if the anomalous linear term is neglected in 
both sets of measurements. The nature of the anomaly is not clear at present. There are indications, how­
ever, that the anomaly is much reduced (to roughly 1/3) in well-annealed samples. 



We have also compared the Debye temperatures for different molar volumes as a function 
of the reduced temperature TIOD' This comparison is made in table 11 where values of 
0D (V)IOD (Vo) are listed as functions of T/OD (we chose Vo = 12'57 cm3/mole for sHe and 

.. 10 

80 

4~1----~--~~--~----~15~---L----~~ 

molar volume (cm3) 

FIGURE 15. The Debye temperatures of solid 4He and solid sHe as a function of volume at the same 
reduced temperature «()DIT = 18). The open points are directly measured values; the closed 
points are extrapolated from a slightly higher reduced temperature. 

TABLE 11. 0D(V)/OD(Vo) AT DIFFERENT REDUCED TEMPERATURES FOR SOLID 3He 
AND SOLID 4He 

(Vo has been taken as 12·57 em3 mole for sHe and 11.77 em3 mole for 4He) 

V (emS) =13·33 13·56 14·16 14·98 15·72 16·71 16·87 17·02 

81T sHe 
18·0 0·881 0·846 0·769 0·672 0·597 
15·2 0·874 0·844 0·767 0·671 0·601 0·514 0·504 0·490 
12·9 0·875 0·841 0·761 0·668 0·596 0·513 0·503 0·491 
11·0 0·872 0·837 0·761 0·667 0·594 0·509 0·499 0·488 
9·7 0·874 0·840 0·758 0·664 0·590 0·501 0·493 0·480 
8·25 0·874 0·839 0·756 0·656 

v (emS) = 12·22 14·55 16·25 

OIT 4He 

18·0 0·919 0·620 
12·0 0·923 0·624 0·474 
9·0 0·920 0·614 0·462 

Vo = 11'77 cm3/mole for 4He). There is clearly a systematic change in this ratio as the 
melting point is approached. This might be due, for example, either to anharmonic effects 
in the lattice vibrations or to the formation of vacancies in the lattice. Apart from this 
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range, the ratio see~s to be almost constant. This implies therefore that there exists to a 
good approximation a reduced 8D curve of the form 

(13) 

Since -Bln8/BIn V = 2'4 and is very nearly constant over the whole volume range 
investigated, we can write F( V) oc V-N. These results mean that a Gruneisen equation of 
state describes the data quite well over a wide range of volumes and temperatures. 

As already mentioned, it should be possible to calculate values of f)o from the elastic 
constants of the solid at the density of interest. Although we do not know the complete 
elastic constants of solid helium we do know its compressibility as a function of volume. 
From this alone it is possible to calculate an approximate value of f)o by making some 
assumption about how Poisson's ratio varies with volume. The simplest relation of this 

kind implies that f) oc (a/pm)!, ' (14) 

where a is the lattice parameter, p the compressibility, and m the mass of the atom. In 
table 12 we compare the experimental values of f)D evaluated at the same reduced tem­
perature (f)D/T = 18) with the corresponding values of (a/pm)! for both helium isotopes. 

TABLE 12. COMPARISON OF f)D FROM SPECIFIC HEATS WITH f) ESTIMATED 

FROM THE COMPRESSIBILITY 

The values of OD are taken at the same reduced temperature TIOD = 18. The values in brackets are 
extrapolated from slightly higher reduced temperatures. 

V (cm3/mole) 0D (OK) OD(fJmjVi)* 
'He 

12·57 101·2 500 
13·33 89·3 497 
13·56 85·8 496 
14·16 78·0 495 
14·98 68·1 491 
15·72 60·5 491 
16·71 (51·9) 482 
16·87 (50'9) 483 
17·02 (49'6) 480 ", 

4He 
11·77 99·9 499 
12·22 91·9 509 

01: 
14·55 62·0 526 
16·25 (46'6) 510 

(Instead of a, the lattice parameter, we have written Vi.) The last column of the table gives 
the product f)D(/Jm/Vi)!. Although for SHe it shows small systematic changes and for 4He 
some bigger, apparently random, changes, this product remains rather constant over the 
whole range. We may therefore conclude that the volume dependence of U reHects quite 
closely the volume dependence of p. By putting in a reasonable value for the constant of 
proportionality in equation (14) (cf., for example, Mitra '& Joshi 1961) itis found that the 
magnitude of f) so calculated is similar to the values of f) 0 indicated by the extrapolations in 
figures 7 and 8. Since the theory is only approximate this agreement is not very significant 
but it does perhaps suggest that if there is a low temperature anomalous contribution to the 
specific heat as found by Heltemes & Swenson it is not due to the lattice vibrations . 

. . 
.' , 



4'2. Energy relations in solid helium at 0 oK 

For the interaction between two helium atoms we assume the de Boer-Michels potentialt 
(de Boer & Michels 1938) 

(15) 

where B = 447, C = 1'59, and r, the distance between the centres of both atoms, is 
measured in angstroms. We further assume that the energy in a system of many atoms can 
be calculated by simply superimposing the two-body potential of equation (15). In order 
to define the static lattice energy, ~, we assume that the atoms are held rigidly at their 
average positions (the lattice sites). The energy ~ can then be calculated from equation (15) 
by taking account of all interactions : 

(16) 

where the sum extends over all lattice sites. According to quantum theory this is not the 
ground state. In classical terms we can say that even at 0 oK the atoms vibrate around their 
average positions. This can be seen as a consequence of the uncertainty principle. Owing 
to this zero-point motion the internal energy at 0 OK, Uo, is higher than the static lattice o . 
energy, and the difference between these energies is defined as zero-point energy ~, 

" t (17) 

(In this relation, all the quantities depend on volume.) 
Because the definition of ~ involves ~, which can be only obtained through consideration 

of a hypothetical classical model of the solid, the zero-point energy cannot be determined 
directly from experiment. The concept of zero-point energy is, however, valuable because 
it provides a convenient measure of the influence of quantum corrections. 

In figure 13 we have given the static lattice potential, ~, calculated from the de Boer­
Michels potential (equation (15)), the internal energy, Uo, at OOK for solid 4He and SHe, 
and the zero-point energy ll,., for both isotopes. It will be noticed that Uo is positive over 
most of the volume range of our experiments. 

Several calculations of the ground state of solid helium have been published. London 
(1954) and Hurst & Levelt (1961) used a cell model of the solid. London considered a 
spherical rigid box, whereas Hurst & Levelt used a sphericalized potential derived from 
the actual interatomic potential and the observed lattice structure. The cell model is 
essentially a one-particle model and corresponds to the Einstein approximation in the 
theory of specific heats. 

Quantum-mechanical variational methods have been used by Bernardes (1960), by 
Saunders (1962), and by Nosanow & Shaw (1962) to obtain an estimate of the energy of the 
ground state of solid helium. Nosanow & Shaw review the previous variational treatments 
and conclude that such a method using spherically symmetric, single-particle wave func­
tions is not adequate for calculating the ground states of solid 3He or 4He. 

t We have chosen this version of the helium interatomic potential because it is derived from low­
temperature gas data; these data emphasize the low energy part of the potential curve, which is important 
here. For a more detailed discussion see Hooton (1955)· 
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In figure 13 we give a comparison of the experimental value of Uz with the calculations of 
London (1954); it can be seen that the volume dependence of Uz is reasonably well repro­
duced by this theoretical expression. It must, however, be borne in mind that the uncer­
tainty in the experimental value of Uz is large, mainly because of uncertainties in the 
interatomic potential used to calculate <1>. By comparing the de Boer-Michels potential 
with other proposed potentials (Yntema & Schneider 1950; Slater & Kirkwood 1931) one 
finds that uncertainties of up to 15 % exist due to this cause. Therefore the rather good 
agreement of London's calculations with the experimental results is partly fortuitous. 

A different approach to the calculation of the zero-point energy is through the vibrational 
properties of the lattice. Domb & Salter (1952) showed that at least for cubic Bravais 
lattices and harmonic oscillations the zero-point energy is given very closely by 

(18) 

where 000 is the (theoretical) high-temperature limit of the Debye temperature. Salter 
(1954) has used this expression for the discussion of the zero-point properties of the heavier 
rare gas solids. No satisfactory theoretical derivation of equation (18) has been given for 
the case of helium where the zero-point vibrations are strongly anharmonic. Nevertheless, 
our results on helium show that Uz is proportional to OD for both isotopes (OD is again-evalu­
ated at the same reduced temperature for all densities in both isotopes). They show further 
that the constant of proportionality is about that to be expected from equation (18) if one 
estimates 000 from the low-temperature part of the curve ofOD against T. It is thus probable 
from the evidence of the present experiments that even in this extreme case, equation (18) 
still describes the experimental results surprisingly well. 

Although the large amplitude of the zero-point motion in solid helium introduces many 
difficulties into the calculation of Uo at low densities, it is to be expected that as the density 
increases (volume decreases) the zero-point energy will become less and less important in 
comparison with the energy associated with the repulsive forces between the atoms. {Uz 
varies approximately as V-2 (since r ~ 2) whereas the potential of the repulsive forces varies 
as something like V-·.) At small enough volumes, therefore, we may expect that the ratio 
of the values of Uo for both isotopes will tend towards unity. Similarly, the restoring forces 
produced when the lattice is perturbed will tend to become the same in the two isotopes so 
that the frequencies of the resulting vibrations will be determined by the ratio of the masses 
of the two kinds of atoms, i.e. the ratio OslO. will tend to the limiting value {m.lms)l as the 
volume is diminished, provided that no changes in the electronic band structure of the 
solids intervene. 

In table 13 we give the ratio of the Debye temperatures for SHe and ·He, compared at 
the same molar volume and at the same reduced temperature, in units of {m.lmJl. The 
ratio of the Debye O's measured at the same reduced temperature varies very little with -
temperature so that this comparison can be made quite accuratdy. It can be seen that the 
ratio of the Debye temperatures tends towards (m.lms)l at low molar volumes. At high 
molar volumes, this ratio is exceeded by up to 7 %. This is qualitatively in accordance with 
perturbation anharmonic theory which shows that when anharmonic effects come in, the 
o of the lighter isotope (in which therefore the anharmonic effects are greater) will increase 
more rapidly than that of the heavier isotope (T. H. K. Barron, private communication). 



• 
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TABLE 13. COMPARISON OF THE DEBYE TEMPERATURES OF SOLID SHe AND 4He 

AS A FUNCTION OF VOLUME 

V (em'/mole) (m,/m.)i 0,/0. .. 12·5 1·028 
13 1·030 
14 1·035 : . 
16 1·040 
16 1·058 
16·5 1·074 • • to 

4·3. The fluid helium isotopes 

Only a few experimental determinations of the specific heat of fluid helium at high 
density are reported. Eucken (1916) measured Cv at fairly low densities over the temperature 
range 16 to 32 OK. A few observati9ns were reported by Keesom & Keesom (1936) and by 
Dugdale & Simon (1953). Hill & Lounasmaa (1960) covered the range up to a pressure of 
IOOKg/cm2, corresponding to V = 19·4cm3/mole from 1·2 to 4 OK. The results of Hill & 
Lounasmaa do not overlap with the present set of measurements; they seem, however, to 
form a reasonable extrapolation. 

The characteristic result of the present set of measurements is that Cv at the high tempera. 
ture limit tends towards the value fR (or slightly above this value) independent of the 
molar volume. At low temperatures Cv decreases in a monotonic way until the solidification 
point is reached. A close similarity exists between the behaviour of both isotopes and, in 
the range of densities and temperatures investigated, there seems to be no detectable 
influence of the different particle statistics. 

The fall in Cv with falling temperature is thus not attributable to simple ideal gas 
degeneracy: it seems more probable that the fall-off is due to localized vibrations of the 
atoms of the fluid. Let us suppose that each atom is imprisoned in a cell formed by 
neighbouring atoms. At low energies, the energy levels available to the atoms will be 
discrete so that when kT falls to a value comparable with the energy difference between 
these levels, Cv will begin to diminish. At higher energies, the energy levels will be more like 
those of a free particle in a box. This model of a fluid, which was developed by Eucken and 
his co-workers (Eucken & Seekamp 1928; Bartholome & Eucken 1937) and more recently 
by Levelt & Hurst (1960) has been applied with some success to the explanation of the 
temperature dependence of Cv in other simple fluids such as the hydrogen isotopes and the 
heavier inert gases. The model implies that Cv may rise above iR (indeed in the extreme 
limit it may reach 3R) before falling again at higher temperatures to the classical limit 
of !R, characteristic of monatomic gases. The actual temperature dependence of Cv is, of 
course, determined by the detailed form of the potential which is assumed to exist within 
the celio Here, however, we wish only to point out that a model of this kind will explain 
not only the decrease of Cv at lower temperatures in the fluid helium isotopes but also why, 
in these fluids, Cv appears to rise above iR at higher temperatures, as indicated in 
figures 5 and 6. 

CONCLUSIONS 

The behaviour of the specific heats of the solid helium isotopes at very low temperatures 
is still obscure. (But see the note added in proof on p. 22.) Until this has been convincingly 
established and understood, conclusions about their behaviour at higher temperatures must 

-
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be tentative. With this reservation we would draw the following conclusions from our 
experiments. As far as the close-packed phases are concerned, solid helium in both isotopic 
forms appears to behave normally, i.e. it can be understood at least semi-quantitatively in 
terms of existing theories and concepts. For example, the zero-point energy can be estimated 
roughly by means of a crude cell model due to London, or by means of a quasi-harmonic 
model of the vibrations of the solids. Likewise the temperature dependence of the 
specific heats appears to be similar to that of a quasi-harmonic close-packed solid and 
the magnitude of the characteristic temperature at each density agrees with what is known 
about the mechanical properties of the solids. 

The specific heat of the fluid isotopes can be understood qualitatively; at present there 
appears to be no possibility of a detailed comparison with fundamental theory. 
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